The realization space is [1 0 1 1 x1 - 2 1 0 x1^2 - 3*x1 + 3 0 x1^3 - 5*x1^2 + 9*x1 - 6 x1^2 - 3*x1 + 3] [0 1 1 1 -1 x1 0 0 x1^2 - 3*x1 + 3 -x1^2 + 3*x1 - 3 x1^3 - 3*x1^2 + 3*x1] [0 0 0 1 -1 1 1 1 x1^2 - 3*x1 + 2 -x1^2 + 3*x1 - 2 -x1 + 1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (x1^8 - 10*x1^7 + 45*x1^6 - 120*x1^5 + 209*x1^4 - 245*x1^3 + 189*x1^2 - 87*x1 + 18) avoiding the zero loci of the polynomials RingElem[x1 - 1, x1^2 - 2*x1 + 2, x1, x1 - 2, x1^2 - 3*x1 + 3, x1^4 - 5*x1^3 + 9*x1^2 - 7*x1 + 1, x1^3 - 3*x1^2 + 4*x1 - 1, x1^3 - 4*x1^2 + 5*x1 - 3, x1^2 - x1 + 1, x1^3 - 5*x1^2 + 8*x1 - 5]